Overvoltage Transient Suppressor

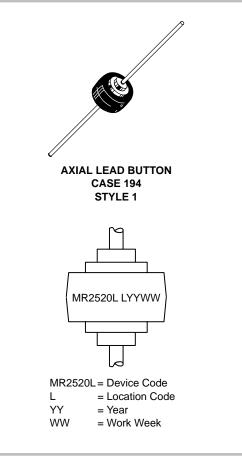
Designed for applications requiring a low voltage rectifier with reverse avalanche characteristics for use as reverse power transient suppressors. Developed to suppress transients in the automotive system, these devices operate in the forward mode as standard rectifiers or reverse mode as power avalanche rectifier and will protect electronic equipment from overvoltage conditions.

- High Power Capability
- Economical
- Increased Capacity by Parallel Operation

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 2.5 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Maximum Lead Temperature for Soldering Purposes: 350°C 3/8″ from Case for 10 Seconds at 5 lbs. Tension
- Polarity: Indicated by Diode Symbol or Cathode Band
- Marking: MR2520L

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)


Rating	Symbol	Value	Unit		
DC Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	23	Volts		
Repetitive Peak Reverse Surge Current (Time Constant = 10 ms, Duty Cycle \leq 1%, T _C = 25°C)	I _{RSM}	58	Amps		
Peak Reverse Power (Time Constant = 10 ms, Duty Cycle ≤ 1%, T _C = 25°C)	P _{RSM}	2500	Watts		
Average Rectified Forward Current (Single Phase, Resistive Load, 60 Hz, T _C = 125°C) (See Figure 4)	Ι _Ο	6.0	Amps		
Non–Repetitive Peak Surge Current Surge Supplied at Rated Load Conditions Halfwave, Single Phase	I _{FSM}	400	Amps		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	–65 to +175	°C		

ON Semiconductor

http://onsemi.com

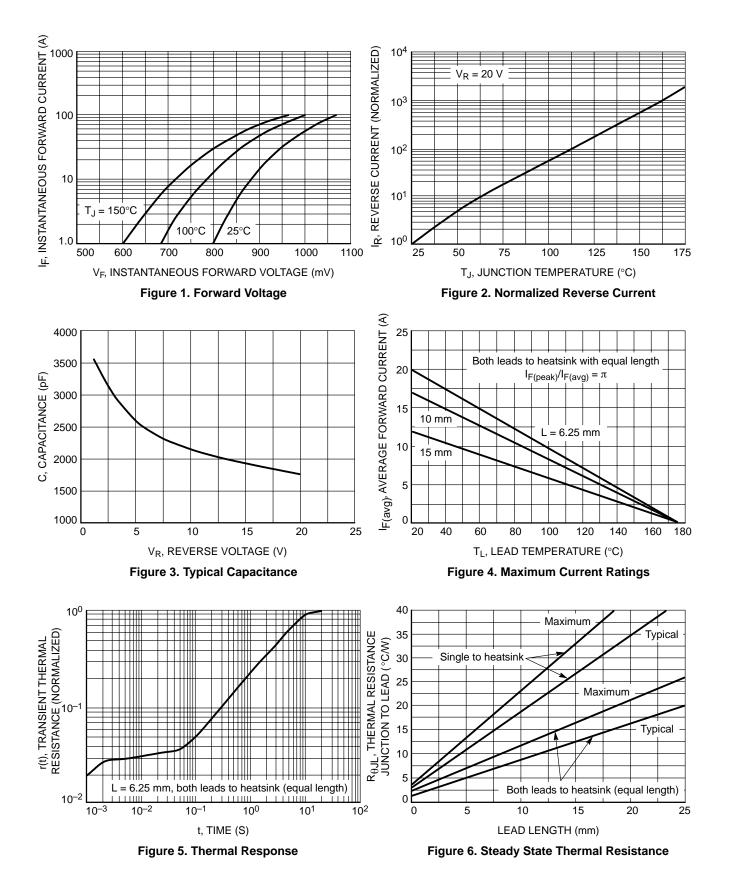
OVERVOLTAGE TRANSIENT SUPPRESSOR 24 – 32 VOLTS

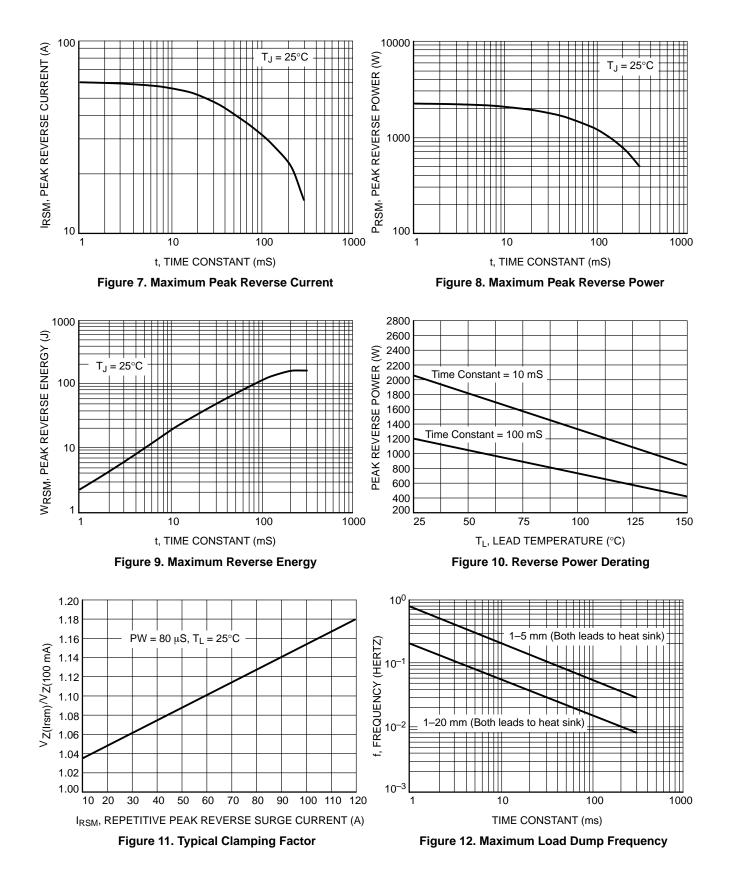
ORDERING INFORMATION

Device	Package	Shipping
MR2520L	Axial Lead Button	1000/Box
MR2520LRL	Axial Lead Button	800/Reel

THERMAL CHARACTERISTICS

Characteristic	Lead Length	Symbol	Max	Unit
Thermal Resistance, Junction to Lead, Both Leads to Heat Sink with Equal Length	6.25 mm 10 mm 15 mm	R _{θJL}	7.5 10 15	°C/W
Thermal Resistance Junction to Case	-	$R_{ extsf{ heta}JC}$	1.0	°C/W


*Typical


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Instantaneous Forward Voltage (Note 1.) ($I_F = 100 \text{ Amps}, T_C = 25^{\circ}C$)	V _F	-	1.25	Volts
Instantaneous Forward Voltage (Note 1.) ($I_F = 100 \text{ Amps}, T_C = 25^{\circ}C$)	V _F	-	0.90	Volts
Reverse Current ($V_R = 20$ Vdc, $T_C = 25^{\circ}C$)	I _R	-	10	nAdc
Reverse Current ($V_R = 20$ Vdc, $T_C = 25^{\circ}C$)	I _R	-	300	nAdc
Breakdown Voltage (Note 1.) $(I_R = 100 \text{ mAdc}, T_C = 25^{\circ}C)$	V _(BR)	24	32	Volts
Breakdown Voltage (Note 1.) ($I_R = 90 \text{ Amp}, T_C = 150^{\circ}C, PW = 80 \mu\text{s}$)	V _(BR)	-	40	Volts
Dynamic Resistance (I _R = 100 mA, T _J = 25°C, f = 1.0 kHz)	R _Z	-	5.0	Ω
Dynamic Resistance (I _R = 40 mA, T _J = 25°C)	R _Z	-	0.15	Ω
Breakdown Voltage Temperature Coefficient	V _{(BR)TC}	-	0.09*	%/°C
Forward Voltage Temperature Coefficient @ $I_F = 10 \text{ mA}$	V _{FTC}	-	-2*	mV/°C

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

*Typical

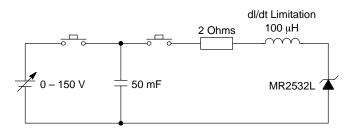
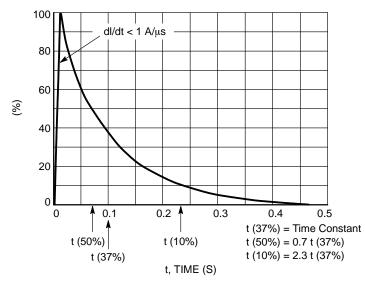
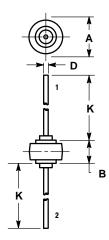


Figure 13. Load Dump Test Circuit




Figure 14. Load Dump Pulse Current

<u>Notes</u>

PACKAGE DIMENSIONS

AXIAL LEAD BUTTON

CASE 194–04 ISSUE F

NOTES: 1. CATHODE SYMBOL ON PACKAGE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.43	8.69	0.332	0.342
В	5.94	6.25	0.234	0.246
D	1.27	1.35	0.050	0.053
Е	25.15	25.65	0.990	1.010

STYLE 1: PIN 1. CATHODE 2. ANODE

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com
- French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit–french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.